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There are a wide variety of applications, including Power over Ethernet (PoE and PoE+), datacom/telecom and industrial, 
operating from a 12v, 24v or 48v input that require an isolated switch mode power supply solution to convert the available 
input voltage to the required regulated output voltage and current. The isolation and power conversion element in these 
supplies is typically a surface mount (SMT) switch mode transformer. With power levels up to 40W the typical power supply 
topologies used are the continuous mode flyback or the active clamp forward. For these power levels and topologies the best 
transformer platform, in terms of power efficiency, board area and cost, is the EP13. This platform has become the de facto 
industry standard. However, as power efficiency becomes more important and system power requirements increase, there 
are typically two limiting factors when using the standard EP13 platform.

The first limitation is the core cross-sectional area (Ae), which dictates the number of primary winding turns required to 
limit the magnetic flux density (B) in a given power supply application. A simplified description of the effect the Ae has on 
transformer design can be summarized by stating that the smaller cross-sectional area available in the core, the greater the 
number of turns required to limit the magnetic flux to the required level, which directly correlates to higher winding resistance 
(DCR) and proportionately higher power losses.

The second limitation is that surface mount transformers must have good coplanarity (0.127mm or less) to ensure that the leads 
of the platform are properly soldered to the PCB. This specification limits the number and gauge of winding wires that can be 
terminated without damaging the lead or causing solder bridges to adjacent leads. Limiting the wire size and number of wires causes 
higher resistance and additional power losses. Pulse has developed an innovative SMT transformer solution using the industry 
standard EP13 footprint, but utilizing a modified core, to increase the cross-sectional area, and a new lead shape, to increase the 
number of windings that can be terminated. The result is a higher power handling transformer with an industry standard footprint.

The most effective way of demonstrating the advantages of this new platform is by comparing the designs for two different 
topologies.

The continuous mode (CM) flyback is most often employed for lower power DC/DC applications (<60W) and offers the 
advantage of a low part count and relatively low solution cost, but the disadvantages of higher peak currents and output 
voltage ripple. A simplified flyback schematic is shown Figure 1 and the transformer current waveforms are shown in Figure 
2. Appendix A reviews the basic operation of the transformer in a flyback topology and details the specific design equations
required. A more detailed analysis of the flyback circuit can be found at the Pulse Electronic website under the G034 link in 
the library/published articles section.

Introduction

Continuous Mode Flyback – Design Comparison – Example 1

Figure 1. Simplified Flyback Topology Schematic
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Introduction

There are a wide variety of applications, including Power over Ethernet 
(PoE and PoE+), datacom/telecom and industrial, operating from a 12v, 24v 
or 48v input that require an isolated switch mode power supply solution 
to convert the available input voltage to the required regulated output 
voltage and current.  The isolation and power conversion element in these 
supplies is typically a surface mount (SMT) switch mode transformer.   
With power levels up to 40W the typical power supply topologies used 
are the continuous mode flyback or the active clamp forward.   For these 
power levels and topologies the best transformer platform, in terms of 
power efficiency, board area and cost, is the EP13.   This platform has 
become the de facto industry standard.    However, as power efficiency 
becomes more important and system power requirements increase, there 
are typically two limiting factors when using the standard EP13 platform.  

The first limitation is the core cross-sectional area (Ae), which dictates the 
number of primary winding turns required to limit the magnetic flux den-
sity (B) in a given power supply application.   A simplified description of 
the effect the Ae has on transformer design can be summarized by stating 
that the smaller cross-sectional area available in the core, the greater the 
number of turns required to limit the magnetic flux to the required level, 
which directly correlates to higher winding resistance (DCR) and propor-
tionately higher power losses.  

The second limitation is that surface mount transformers must have good 
coplanarity (0.127mm or less) to ensure that the leads of the platform are 
properly soldered to the PCB.   This specification limits the number and 
gauge of winding wires that can be terminated without damaging the 
lead or causing solder bridges to adjacent leads.   Limiting the wire size 
and number of wires causes higher resistance and additional power losses. 
Pulse has developed an innovative SMT transformer solution using the 
industry standard EP13 footprint, but utilizing a modified core, to increase 
the cross-sectional area, and a new lead shape, to increase the number of 
windings that can be terminated.  The result is a higher power handling 
transformer with an industry standard footprint.  

The most effective way of demonstrating the advantages of this new 
platform is by comparing the designs for two different topologies.

Continuous Mode Flyback – Design Comparison – Example 1

The continuous mode (CM) flyback is most often employed for lower 
power DC/DC applications (<60W) and offers the advantage of a low part 
count and relatively low solution cost, but the disadvantages of higher 
peak currents and  output voltage ripple.    A simplified flyback schematic 
is shown Figure 1 and the transformer current waveforms are shown in 
Figure 2. Appendix A reviews the basic operation of the transformer in 
a flyback topology and details the specific design equations required.  A 
more detailed analysis of the flyback circuit can be found at the Pulse  
Electronic website under the G034 link in the library/published articles 
section.  
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For purposes of this comparison, flyback transformers were designed for a 33-57v input and 5v output at six different power 
levels (20W to 45W) on both the standard EP13 and EP13Plus platforms. The inductance requirements and peak and rms 
currents are shown in Figure 3. The power loss within the transformers was compared and is shown in Figure 4.

The active clamp forward is often implemented in applications between 20-200W and offers the advantage of excellent 
efficiency due to facilitation of zero volt switching, lower drain voltages and low output inductance requirements but comes at 
the cost of added complexity and higher component count. A simplified active clamp forward schematic is shown in Figure 5 
and the transformer current waveforms are shown in Figure 6. The basic operation of the transformer in a forward topology 
along with the relevant design equations are detailed in Appendix B.

For purposes of the comparison, forward transformers were designed for a 33-57v input and 5v output at six different power 
levels (20W to 70W) on both the standard EP13 and EP13Plus platforms. The rms currents for these designs are shown in 
the Figure 7. The power loss within the transformers was compared and is shown in Figure 8.

Because the EP13Plus has a larger cross sectional area, fewer turns are required and this, along with the modified 
lead, allows for lower winding resistance. As can be seen Figure 3 as the output power increases, the power loss 
difference between the standard EP13 and EP13Plus widens. The output power a transformer can deliver, for a given 
temperature rise, is directly proportional to the power loss within the transformer. So a 25% reduction in transformer 
loss with the new EP13Plus represents a proportional 25% increase in output power capability. As an example for a 45C 
rise the EP13, in flyback mode, can deliver 25W but the EP13Plus can deliver 32W of power.

Active Clamp Forward Transformer — Design Comparison — Example 2

Output Power (5v/xxW)

20W 25W 30W 35W 40W 45W

Ind 54uH 43uH 36uH 31uH 27uH 24uH

Ipk_pri 2.3A 2.8A 3.4A 4.0A 4.5A 5.1A

I_rms_pri 1.1A 1.4A 1.6A 1.9A 2.2A 2.5A

I_rms_sec 5.6A 7.0A 8.4A 9.8A 11.2A 12.6A

Figure 3. CM Flyback Transformers (33–57v input, 200kHz)
Figure 4. Comparison of Power Loss in Xfrm at Di�erent Output 
Powers (33–57 Vin, 200kHz, CM Flyback, Vout=5v)
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For purposes of this comparison, flyback transformers were designed for a 
33-57v input and 5v output at six different power levels (20W to 45W) on 
both the standard EP13 and EP13Plus platforms.   The inductance require-
ments and peak and rms currents are shown in Figure 3.  The power loss 
within the transformers was compared and is shown in Figure 4.

Because the EP13Plus has a larger cross sectional area, fewer turns are 
required and this, along with the modified lead, allows for lower winding 
resistance.  As can be seen Figure 3 as the output power increases, the 
power loss difference between the standard EP13 and EP13Plus widens. 
The output power a transformer can deliver, for a given temperature rise, 
is directly proportional to the power loss within the transformer.   So a 
25% reduction in transformer loss with the new EP13Plus represents a 
proportional 25% increase in output power capability.   As an example for 
a 45C rise the EP13, in flyback mode, can deliver 25W but the EP13Plus can 
deliver 32W of power.

Active Clamp Forward Transformer – Design Comparison - Example 2

The active clamp forward is often implemented in applications between 
20-200W and offers the advantage of excellent efficiency due to facilita-
tion of zero volt switching, lower drain voltages and low output inductance 
requirements but comes at the cost of added complexity and higher 
component count.  A simplified active clamp forward schematic is shown 
in Figure 5 and the transformer current waveforms are shown in Figure 6.   
The basic operation of the transformer in a forward topology along with 
the relevant design equations are detailed in Appendix B.    

For purposes of the comparison, forward transformers were designed for 
a 33-57v input and 5v output at six different power levels (20W to 70W) 
on both the standard EP13 and EP13Plus platforms.    The rms currents 
for these designs are shown in the Figure 7.   The power loss within the 
transformers was compared and is shown in Figure 8.  

CM Flyback Transformers (33-57v input, 200kHz)
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I_rms_sec 5.6A 7.0A 8.4A 9.8A 11.2A 12.6A
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For purposes of this comparison, flyback transformers were designed for a 
33-57v input and 5v output at six different power levels (20W to 45W) on 
both the standard EP13 and EP13Plus platforms.   The inductance require-
ments and peak and rms currents are shown in Figure 3.  The power loss 
within the transformers was compared and is shown in Figure 4.

Because the EP13Plus has a larger cross sectional area, fewer turns are 
required and this, along with the modified lead, allows for lower winding 
resistance.  As can be seen Figure 3 as the output power increases, the 
power loss difference between the standard EP13 and EP13Plus widens. 
The output power a transformer can deliver, for a given temperature rise, 
is directly proportional to the power loss within the transformer.   So a 
25% reduction in transformer loss with the new EP13Plus represents a 
proportional 25% increase in output power capability.   As an example for 
a 45C rise the EP13, in flyback mode, can deliver 25W but the EP13Plus can 
deliver 32W of power.

Active Clamp Forward Transformer – Design Comparison - Example 2

The active clamp forward is often implemented in applications between 
20-200W and offers the advantage of excellent efficiency due to facilita-
tion of zero volt switching, lower drain voltages and low output inductance 
requirements but comes at the cost of added complexity and higher 
component count.  A simplified active clamp forward schematic is shown 
in Figure 5 and the transformer current waveforms are shown in Figure 6.   
The basic operation of the transformer in a forward topology along with 
the relevant design equations are detailed in Appendix B.    

For purposes of the comparison, forward transformers were designed for 
a 33-57v input and 5v output at six different power levels (20W to 70W) 
on both the standard EP13 and EP13Plus platforms.    The rms currents 
for these designs are shown in the Figure 7.   The power loss within the 
transformers was compared and is shown in Figure 8.  
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Figure 7. Active Clamp Forward Transformers  
(35-57 V input, 200kHz)

Figure 8. Comparison of Power Loss in Xfrm at Diferent Output 
Powers (33-57 Vin, 200kHz, Active Clamp Forward, Vout=5v)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 20 30 40 50 60 70 80

Po
we

r L
os

s i
n T

ra
ns

fo
rm

er
 (W

)

Output Power (5v/xxW)
EP13 Plus EP13 Standard

25%  less 
losses at 60W
output 

Output Power (5v/xxW)
Output 
Power 20 30 40 50 60 70

Output 
Current 4 6 8 10 12 14

Xfrm 
Sec RMS 
Current

3.2 4.8 6.4 8.1 9.7 11.3

Xfrm 
Pri RMS 
Current

0.90 1.3 1.8 2.2 2.7 3.1

As we saw in the flyback design example, as the output power increases the difference in power loss between the standard 
EP13 and EP13Plus also increases. Again, the output power a transformer can deliver, for a given temperature rise, is 
directly proportional to the power loss within the transformer. The 25% reduction in transformer loss with the new EP13Plus 
represents a 25% increase in output power capability. As an example for a 45C rise the EP13 can deliver 42W, in a forward 
topology, but the EP13Plus can deliver 53W.

The innovative design approach for the new Pulse EP13Plus platform has a demonstrated ability to provide 25% more power 
handling in the same footprint and mechanical size as the industry standard EP13. This offers designers the flexibility to 
increase power density or to lower thermal loads in existing designs. To assist power supply designers in incorporating this 
new platform Pulse has released a catalog series of EP13Plus transformers for continuous mode flyback and active clamp 
forward topologies. These 12 designs cover both 9-57v and 33-57v input ranges and can provide six different output voltages 
from 3.3v to 24v.

CM Flyback – 33 to 57v input, 200kHz  
PA3855.001 – 2 x 3.3v/3.5A output  
PA3855.002 – 2 x 5.0v/3.0A output  
PA3855.003 – 2 x 12v/1.5A output

CM Flyback – 9 to 57v input, 200kHz  
PA3855.004 – 2 x 3.3v/3.2A output  
PA3855.005 – 2 x 5.0v/2.2A output  
PA3855.006 – 2 x 12v/1.0A output

Active Clamp Forward – 33 to 57v input, 200kHz 
PA3856.001 – 2x 3.3v/8A output  
PA3856.002 – 2 x 5v/7A output  
PA3856.003 – 2 x 12v/3A output

Active Clamp Forward – 9 to 57v input, 200kHz 
PA3856.004 – 2 x 3.3v/5A output  
PA3856.005 – 2 x 5.0v/3.5A output  
PA3856.006 – 2x 12v/1.6A output

The basic operation of the flyback topology can be broken into two operating states, the on-time and the off-time. The on-time 
is when S1 (input side switch) is closed and the input voltage is applied to the transformer causing the current on the primary 
to ramp upward in proportion to the transformer magnetizing inductance. During this time S2 (output side switch) remains 
open (either through the diode action or as a controlled switch) so the transformer must store the input energy in its magnetic 
field as the secondary current path is blocked. The off-time begins when switch S1 is opened and switch S2 is closed 
creating a current path to the output. During this time the stored energy in the transformer is transferred to the secondary 

Conclusions

Appendix A – Continuous Mode Flyback Transformer Operation
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winding and discharged to the output. This cycle is repeated at the operating frequency (FreqkHz) or cycle time (T). If during 
the off-time the secondary current reaches zero the power supply is said to be operating in discontinuous mode. If the current 
remains above zero the power supply is said to be in continuous mode.

For the purposes of the above flyback transformer comparison we set two circuit operating points. First, we targeted the 
maximum duty cycle (ie: on_time/cycle_time or ton/T) to be <0.45 which determines the turns ratio as follows:

(1)	 N = Npri / Nsec = (Vin_min – Vs1) × Dmax / ((Vout + Vs2) × (1 – Dmax))

Second, as it is not possible to have a supply that will operate in continuous mode across the entire range of output power we 
will target a minimum output current, Ioutmin, at which the supply will transition between continuous and discontinuous mode. 
As can be seen in Figure 9 the transition point will vary with input voltage.

For the purposes of this comparison we selected an output current of 50% of full load at minimum input voltage. This current 
determines the required primary inductance as follows:

(2)	 Lmin_uH = (Vout + Vs2) × (1 – Dmax)2 × N2 × 1000 / (2 × Ioutmin × FreqkHz)

Finally, in order to complete the transformer designs we need to know the peak primary current and heating or rms currents 
in the transformer which can be found using the following equations:

(3)	 Iripple_sec = (Vout+Vs2) × (1 – D) × N2 × 1000 / ((Lpri_uH × FreqkHz)

(4)	 Ipk_sec = Iout_max / (1 – D) + 0.5 × Iripple_sec

(5)	 Irms_sec = [(1 – D) × Ipk_sec – Iripple_sec × Ipk_sec + Iripple_sec]
5

(6)	 Ipk_pri = Ipk_sec / (N × nefficiency)

(7)	 Irms_pri = [(D) × Ipk_pri – Iripple_pri × Ipk_pri + Iripple_pri]
5

With the above information, the first step in the flyback 
transformer design was to determine how many primary turns 
are required in order to prevent core saturation, represented by 
the equation:

(8)	 Npri = Lpri_uH × Ipk_pri × 100 / (Bpk_gauss × Aecm2)

A good rule of thumb for maximum flux density (Bpk_gauss) is 2800 G but it will vary somewhat depending on the ferrite core 
material selected. With the turns ratio known, the number of secondary turns was found and then the strands and gauge of 
wires that can fit within the core window and be terminated on the pins was determined. Because the EP13Plus has a larger 
core area it requires less turns to allow for the same Lpri and Ipk_pri, and the lead arrangement allows for larger wires, 
reducing the winding resistance.

Figure 9. Boundary Condition — Iout vs Vin (33-57v 
Input, 5v/9A output, 200kHz with 5.25 to 1 ratio and 24uH)
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Appendix A – Continuous Mode Flyback Transformer Operation

The basic operation of the flyback topology can be broken into two oper-
ating states, the on-time and the off-time.   The on-time is when S1 (input 
side switch) is closed and the input voltage is applied to the transformer 
causing the current on the primary to ramp upward in proportion to the 
transformer magnetizing inductance. During this time S2 (output side 
switch) remains open (either through the diode action or as a controlled 
switch) so the transformer must store the input energy in its magnetic 
field as the secondary current path is blocked.   The off-time begins when 
switch S1 is opened and switch S2 is closed creating a current path to the 
output.  During this time the stored energy in the transformer is trans-
ferred to the secondary winding and discharged to the output.  This cycle 
is repeated at the operating frequency (FreqkHz) or cycle time (T).   If dur-
ing the off-time the secondary current reaches zero the power supply is 
said to be operating in discontinuous mode.  If the current remains above 
zero the power supply is said to be in continuous mode.

For the purposes of the above flyback transformer comparison we set two 
circuit operating points.   First, we targeted the maximum duty cycle (ie: 
on_time/cycle_time or ton/T) to be <0.45 which determines the turns 
ratio as follows:

N = Npri/Nsec = (Vin_min-Vs1) * Dmax/((Vout+Vs2)*(1-Dmax))    (1)

Second, as it is not possible to have a supply that will operate in continu-
ous mode across the entire range of output power we will target a 

minimum output current, Ioutmin, at which the supply will transition
between continuous and discontinuous mode.   As can be seen in Figure 9 
the transition point will vary with input voltage.

For the purposes of this comparison we selected an output current of 
50% of full load at minimum input voltage.   This current determines the 
required primary inductance as follows: 

Lmin_uH = (Vout+Vs2)*(1-Dmax)2 *N2 * 1000 / (2*Ioutmin*FreqkHz)  (2)

Finally, in order to complete the transformer designs we need to know 
the peak primary current and heating or rms currents in the transformer 
which can be found using the following equations:

Iripple_sec = (Vout+Vs2)*(1-D)*N2 *1000 / ((Lpri_uH * FreqkHz)   (3)

Ipk_sec = Iout_max / (1-D) + 0.5* Iripple_sec    (4)

Irms_sec = [(1-D) * Ipk_sec – Iripple_sec * Ipk_sec  + Iripple_sec].5   (5)

Ipk_pri = Ipk_sec/(N*nefficiency)   (6)

Irms_pri = [(D) * Ipk_pri – Iripple_pri * Ipk_pri  + Iripple_pri].5   (7)

With the above information, the first step in the flyback transformer 
design was to determine how many primary turns are required in order to 
prevent core saturation, represented by the equation:   

Npri = Lpri_uH * Ipk_pri * 100 / (Bpk_gauss * Aecm2)   (8)

A good rule of thumb for maximum flux density (Bpk_gauss) is 2800 G 
but it will vary somewhat depending on the ferrite core material selected.  
With the turns ratio known, the number of secondary turns was found and 
then the strands and gauge of wires that can fit within the core window 
and be terminated on the pins was determined.  Because the EP13Plus 
has a larger core area it requires less turns to allow for the same Lpri and 
Ipk_pri, and the lead arrangement allows for larger wires, reducing the 
winding resistance. 
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The basic operation of this topology can be broken into two operating states. During the first state, on-time, switch S1 (input 
side switch) is closed and the input voltage is applied to the transformer. Also during this time switch S2 is closed, and S3 is 
opened, allowing the input current to be transferred, via the magnetic field of the transformer, directly to secondary winding 
and through to the load. The secondary current will be a function of the primary current and the turns ratio of the transformer. 
During the second state, off-time, switch S1 and S2 are opened effectively disconnecting the transformer from the circuit. 
Switch S3 is closed, allowing current to continue to flow to the load from the stored energy in the output inductor. This cycle is 
repeated at the operating frequency or cycle time. The duty cycle (D) is the ratio of on-time over cycle time (ton/T)

For the purposes of this comparison we set the duty cycle (Dmax) to <0.65 which determine the turns ratio per the following 
equation:

(10)	 N = Npri / Nsec = (Vin_min – Vs1) × Dmax / (Vout + Vs2)

As there is no energy storage required in a forward transformer, the limiting design factor is power loss and temperature rise. 
It is therefore necessary to optimize the combination of core losses and copper losses. The core losses are caused by the 
volt-usec applied to the transformer primary and are minimized by increasing the number of primary turns.

Appendix B – Active Clamp Forward Transformer Operation
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The copper losses are caused by rms currents and are minimized by reducing the number of turns. The general equations 
required for the forward transformer design are:

(11)	 Irms_sec = Iout_max × D5

(12)	 Irms_pri = Irms_sec / (N × nefficiency)

(13)	 DeltaBgauss = Vin × D × 106 / (Aecm2 × FreqkHz × Npri)

(14)	 CoreLossW = a × CoreVolumecm3 × DeltaBgaussb × FreqkHz(b+c)

Unlike the CM flyback the current waveforms in a forward transformer have considerable AC content and it is therefore 
necessary to analyze the AC copper losses as well as the DC copper losses. Although the equations and explanation of AC 
proximity losses are not covered in this overview they were accounted for in the designs as presented. In general AC copper 
losses are minimized by reducing the height (thickness of wire and number of layers) as much as possible and interleaving 
the primary and secondary windings. A good rule of thumb is to attempt to balance the overall copper losses and the core 
losses. Ultimately, however, one is looking to minimize the overall losses. Again, because the EP13Plus has a larger core 
area, the turns can be reduced without creating additional core losses. This reduction in turn allows for lower DC and AC 
copper losses.
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